Organic micropollutants in the framework of Water Directives

Dimitra Voutsa, Assistant Professor

Environmental Pollution Control Laboratory Department of Chemistry Aristotle University of Thessaloniki

Organic chemicals in Europe

100,000 chemicals are registered in the European Inventory of Existing Commercial Substances before 1981

30,000 substances marketed in volumes above 1t/y

10,000 substances marketed in volumes above 10,000 t/y

3,800 new compounds came on the market since 1981

Organic micropollutants

Compounds which are detected at the concentrations $\leq \mu g/L$

Synthetic chemicals as well as natural substances

Sources of organic micropollutants

Source	Substance groups	Sources/Pathways
Urban activities	Personal Care products Pharmaceuticals Detergents, Biocides, Flame retardants Pesticides, Dyes	Wastewater Landfill sites
Agriculture	Pesticides (insecticides, herbicides, fungicides) Veterinary pharmaceuticals	Surface runoff Landfill sites
Industry	Industrial chemicals (polymers, dyes, varnishes, oxidants, reductants, detergents, biocides, corrosion inhibitors)	Wastewater Landfill sites
Traffic	Ingredients of motor oils, lubricants, combustion products	Surface runoff
Atmosphere	Combustion products, industrial chemicals	Wet and dry deposition

Organic micropollutants in water cycle

"Classic organic chemicals" detected in rivers

"Emerging" Contaminants in rivers

Water Directives

Directive 2000/60/EC	Water Framework Directive
Decision No 455/2001/EC	Establishing the list of priority substances
Directive 2008/105/EC	Environmental Quality Standards
Directive 2009/90/EC	Technical specifications for chemical analysis and monitoring of water status
Directive 2013/39/EC	Amending previous directives-priority substances

Evaluation of chemical status

List of priority substances (2013/39/EC): 45 compounds

Priority Hazardous substances	Priority substances	Specific pollutants
Anthracene	Alachlor	DDT/p,p'-DDT
Brominated diphenylethers	Atrazine	Aldrin
Cadmium and its compounds	Benzene	Dieldrin
C10-C13-Chloroalkanes	Chlorfenvinphos	Endrin
Di(2-ethylhexyl)phthalate (DEHP)	Chlorpyrifos (ethyl)	Isodrin
Endosulfan	1,2-Dichloroethane	Carbon tetrachloride
Hexachlorobenzene (HCB)	Dichloromethane	Tetrachloroethylene
Hexachlorobutadiene (HCBD)	Diuron	Trichloroethylene
Hexachlorocyclohexane	Fluoranthene	
Mercury and its compounds	Isoproturon	
Nonylphenols	Lead and its compounds	
Pentachlorobenzene	Naphthalene	
Polyaromatic Hydrocarbons	Nickel and its	
(PAHs)	compounds	
Tributyltin compounds	Octylphenols	
Trifluralin	Pentachlorophenol	
Dicofol	Simazine	
Perfluorooctane (PFOS)	Trichlorobenzenes	
Quinoxyfen	Tricholoromethane	
Dioxins-dioxin-like compounds	Aclonifen	
Haxabromocyclododecanes	Bifenox	
(HBDD)	Cypermethrin	
Heptachlor, heptachlor epoxide	Dichlorvos	

Environmental Quality Standards (2008/105/EC and 2013/39/EC)

Good chemical status

 Priority substances− EQS

 Annual average concentrations
 ≤
 AA- EQS

 Maximum allowable concentrations
 ≤
 MAC-EQS

Specific river basin pollutants-national EQS

Quality assurance-quality control

Performance criteria of analytical methods (2009/90/EC)

¢ Limit of Quantification LOQ **30% EQS** 50%

Uncertainty of measurement <

Experience from the implementation of Directives

Many compounds have to be monitored-High cost

 Need for methods with very low quantification limits

ie Heptachlor/epoxide EQS 0.2 pg/L (surface water) 10 fg/L (coastal waters)

Representative sampling design due to temporal variation of micropollutants

Difficulties-problems in chemical characterization

- Missing data for priority pollutants
- Method quality characteristics did not reported
- Method quality characteristics did not always fulfilled the proposed performance criteria
- Insufficient spatial or temporal coverage of measurements

Development of analytical method

 Multi-residue method based on gas chromatographytandem mass spectrometry

- Determination of 70 organic micropollutants from various classes
- Validation according to the monitoring performance criteria -guidelines on quality assurance/quality control
- The method was applied in the basin of Strymonas River

PhD Thesis of E. Terzopoulou Article, Terzopoulou et al., 2015 Environ Sci Pollut Res (2015) 22:1095-1112 DOI 10 1007/s11356-014-3397-3

RESEARCH ARTICLE

A multi-residue method for determination of 70 organic micropollutants in surface waters by solid-phase extraction followed by gas chromatography coupled to tandem mass spectrometry

Evangelia Terzopoulou · Dimitra Voutsa ·

70 organic micropollutants

Organochlorine compound- Chlorinated pesticides (a-HCH, b-HCH, lindane, d-HCH, heptachlor, heptachlor epoxide, endosulfan I, endosulfan II, endosulfan sulfate, aldrin, dieldrin, endrin, endrin aldeyde, p,p-DDE, p,p-DDD, p,p-DDT, methoxychlor, 4chloro-o-tolyoxyacetic acid, mecoprop, dalapon, dichlorprop, dinoseb, dicamba, 2,4-D, silvex, alachlor, metolachlor)

Triazine pesticides (atraton, terbuthylazine, propazine, atrazine, simazine, prometryne, ametryne, simetryn, terbutryne) Organophosphorus pesticides (fenthion, chlorfenviphos, chlorpyrifos)

Carbamate & urea pesticides (swep, aminocarb, carbaryl, methiocarb, chloropropham, carbofuran, diuron, isoproturon, diflubenzuron)

PAHs (acenapthylene, fluorene, anthracene, phenanthrene, pyrene, 1-2, benzanthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene)

PCBs (PCB28, PCB52, PCB101, BPC138, PCB153, PCB180)

Other compounds: 1H-benzotriazole, salicylic acid, nitrophenol, 4-tert-octylphenol caffeine, nonylphenol, bishpenol A

Frequency of detection

Passive sampling (an alternative tool)

- Exposure of passive samplers devices over 2-4 weeks
- Accumulation and preconcentration of micropollutants

This enables

- improvement of limits of quantification (LOQ)
- integrate assessment of chemical statustime-weighted average concentrations (TWA)

Passive sampling

 Recommended in the EC Guidance Document on surface water monitoring

• Recommended in Directive 2013/39/EC as complementary method to improve the level of confidence in water monitoring in comparison to spot sampling

• Could be used in conjunction with investigating monitoring as risk-based screening tool to

- a) evaluate the presence or absence of chemical compounds
- b) identify pollution sources
- c) estimate dissolved water concentrations
- d) assess the exposure of biota to contaminants

Types of passive samplers

SPMDs: Hydrophobic compounds

POCIS: Hydrophilic compounds

Exposure for two weeks

Correlation between active & passive sampling

Passive sampling in Strymonas basin

 More compounds were detected by passive samplers
 Comparable data between active and passive sampling for polar compounds

•Describe satisfactory the exposure of organisms to hydrophobic compounds

 Passive sampling could be an additional tool for investigating monitoring and operational monitoring

•An extensive survey is needed to fully evaluate the efficiency of passive samplers under different conditions

Thank you