

Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany

Council for Development and Reconstruction (CDR) Ministry of Energy and Water (MoEW) Water Establishment Beirut and Mount Lebanon (WEBML)

German-Lebanese Technical Cooperation Project

Water balance for the Jeita groundwater catchment using WEAP

Beirut Water Week February 20, 2013

Philip Schuler MSc, BGR

Outline

- I. Problem statement
- **II.** Objectives of the model
- III. WEAP model
- **IV.** Results
- V. Conclusion

I. Problem statement

• High karstification of the Jurassic (J4) and Cretaceous (C4)

I. Problem statement

Quantity of Jeita discharge influenced by:

I. Problem statement

Seasonal variation of discharge of Jeita Spring

Average monthly discharge of Jeita Spring in MCM between 1966 & 1971

Available resources for supply management

II. Objectives of the model

- Hydrological balance on a monthly basis
- Assessment of hydrological components:
 - Rainfall
 - Evapotranspiration
 - Surface runoff
 - GW recharge
- Domestic & agricultural demand
- Origin of Jeita's groundwater
- Water management options: MAR

- Water Evaluation and Planning
- Non-commercial software
- Developed by the Stockholm Environment Institute
- Used within the MENA region
 - Jordan, Morocco, Tunisia, Palestine, Syria
- Conceptual in- & output model
- Modeling of hydrological budget
- Natural and anthropogenic supply and demand

- Discretization
- Sub-division into 11 sub-catchments
 - I. Geology
 - II. Surface runoff
 - III. Spring- & reservoir catchments
- Reflect spatial variability:
 - Topography
 - Rainfall
 - Evapotranspiration

- Input parameters:
 - Rainfall
 - ET
 - Landcover
 - Landuse
 - Domestic demand
 - Irrigation efficiency
 - FAO crop coefficients
 - Chabrouh dam
 - Irrigation canals
 - GW abstraction

п

...

Total annual precipitation leads to:

Natural annual water balance of the Jeita Spring catchment in MCM

IV. Results

V. Conclusion

- > 50% of Jeita's annual discharge comes from the C4
- > 40% of Jeita's annual discharge comes from Afqa and Rouaiss Spring
- Large quantities of water resources are unused: <u>164 MCM</u> direct runoff per year
- Potential for MAR: Increasing discharge at Jeita and reducing the water shortage period

& Thank You!

Philip Schuler MSc – Water Management Expert Raifoun, Roukoz Sfeir Building PhilipSchuler@gmx.de +961 70 258094

